

Welcome to VDRP

Version: 1.0.5.post0

VDRP the Virus Data Reduction Pipeline is a collection of scripts
and FORTRAN programs for astrometry, throughput and flux
limit calculation.

VDRP currently supports only python 2.7.

User documentation

	Astrometry routines

	Throughput routines

	Fluxlimit routines
	Setting up and running the fluxlimit calculations

	Spectral line extraction routines

Developer documentation

	Contribute to VDRP
	How To

	Coding style

	Testing

	Documentation

	Code documentation
	astrometry - Astrometry routines

	calc_fluxlim - Fluxlimit calculation routines

	cltools - Commandine tools

	cofes_vis - Visualization routines

	containers - Container structures

	daophot - Daophot helper routines

	extraction - Spectrum extraction routines

	file_tools - File access routines

	fit_radec - RA/DEC fitting routines

	fplane_client - FPlane retrieval routines

	jobsplitter - Jobsplitter - slurm setup tool

	mphelpers - MPHelpers - Parallel processing routines

	mplog - Mplog - Parallel process logging

	photometry - Throughput measurement routines

	programs - FORTRAN program interfaces

	setup_fluxlim - Fluxlimit setup routines

	star_extraction - Stellar Extraction routines

	utils - VDRP utility routines

	vdrp_helpers - VDRP helper routines

	vdrprunner - VDRP batch runner

About

	Authors

	Changelog

	TODO

Links

	Index

	Module Index

	Search Page

Astrometry routines

Throughput routines

Fluxlimit routines

Setting up and running the fluxlimit calculations

To calculate the fluxlimit cube of a given night shot call:

vdrp_setup_flim night shot

This will create a subdirectory tree of the form nightvshot/flim
and in there a slurm batch script named flimnightvshot.slurm and
the corresponding input files. Running the script as

vdrp_setup_flim --commit night shot

the slurm script will be sent to the batch system automatically.
If needed the default runtime of 06:00:00 can be modified
using –runtime on the command line.

Spectral line extraction routines

Contribute to VDRP

How To

The suggested workflow for implementing bug fixes and/or new features is the
following:

	Identify or, if necessary, add to our redmine issue tracker [https://luna.mpe.mpg.de/redmine/projects/vdrp] one or more issues
to tackle. Multiple issues can be addressed together if they belong together.
Assign the issues to yourself.

	Create a new branch from the trunk with a name either referring to the topic
or the issue to solve. E.g. if you need to add a new executable, tracked by
issue #1111
do_something:

svn cp ^/trunk ^/branches/do_something_1111\
-m 'create branch to solve issue #1111'

	Switch to the branch:

svn switch ^/branches/do_something_1111

	Implement the required changes and don’t forget to track your progress on
redmine. If the feature/bug fix requires a large amount of time, we suggest,
when possible, to avoid one big commit at the end in favour of smaller
commits. In this way, in case of breakages, is easier to traverse the branch
history and find the offending code. For each commit you should add an entry
in the Changelog file.

If you work on multiple issues on the same branch, close one issue before
proceeding to the next. When closing one issue is good habit to add in the
description on the redmine the revision that resolves it.

	Every function or class added or modified should be adequately documented as
described in Coding style.

Documentation is essential both for users and for your fellow developers to
understand the scope and signature of functions and classes. If a new module
is added, it should be also added to the documentation in the appropriate
place. See the existing documentation for examples.

Each executable should be documented and its description should contain
enough information and examples to allow users to easily run it.

	Every functionality should be thoroughly tested for python 3.5 or 3.6
in order to ensure that the code behaves as expected and that future
modifications will not break existing functionalities. When fixing bugs, add
tests to ensure that the bug will not repeat. For more information see
Testing.

	Once the issue(s) are solved and the branch is ready, merge any pending change
from the trunk:

svn merge ^/trunk

While doing the merge, you might be asked to manually resolve one or more
conflicts. Once all the conflicts have been solved, commit the changes with a
meaningful commit message, e.g.: merge ^/trunk into
^/branches/do_something_1111. Then rerun the test suite to make sure your
changes do not break functionalities implemented while you were working on
your branch.

	Then contact the maintainer of fplaneserver and ask to merge your branch back
to the trunk.

Information about branching and merging can be found in the svn book [http://svnbook.red-bean.com/en/1.8/svn.branchmerge.html]. For any questions or
if you need support do not hesitate to contact the maintainer or the other
developers.

Coding style

All the code should be compliant with the official python style guidelines
described in PEP 8 [https://www.python.org/dev/peps/pep-0008]. To help you keep the code in spec, we suggest to install
plugins that check the code for you, like Synstastic [https://github.com/scrooloose/syntastic] for vim or flycheck [http://www.flycheck.org/en/latest/] for Emacs.

The code should also be thoroughly documented using the numpy style [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]. See
the existing documentation for examples.

Testing

Note

Every part of the code should be tested and should run at least under python
3.5 and possibly 3.6

fplaneserver uses the testing framework provided by the robot framework package [https://robotframework.org]. The tests should cover every
aspect of a function or method. If exceptions are explicitly raised, this should
also tested to ensure that the implementation behaves as expected.

The preferred way to run the tests is using tox [https://testrun.org/tox/latest/index.html], an automatised test help
package. If you have installed tox, with e.g. pip install tox, you can run
it by typing:

tox

It will take care of creating virtual environments for every supported version
of python, if it exists on the system, install fplaneserver, its dependences and the
packages necessary to run the tests and runs py.test

You can run the tests for a specific python version using:

python -m robot

A code coverage report is also created and can be visualized opening
into a browser cover/index.html.

Besides running the tests, the tox command also builds, by default, the
documentation and collates the coverage tests from the various python
interpreters and can copy then to some directory. To do the latter create, if
necessary, the configuration file ~/.config/little_deploy.cfg and add to it
a section called fplaneserver with either one or both of the following options:

[fplaneserver]
if given the deploys the documentation to the given dir
doc = /path/to/dir
if given the deploys the coverage report to the given dir
cover = /path/to/other/dir

it's also possible to insert the project name and the type of the document
to deploy using the {project} and {type_} placeholders. E.g
cover = /path/to/dir/{project}_{type_}
will be expanded to /path/to/dir/fplaneserver_cover

For more information about the configuration file check little_deploy [https://github.com/montefra/little_deploy].

Documentation

To build the documentation you need the additional dependences described in
pydep. They can be installed by hand or during fplaneserver installation
by executing one of the following commands on a local copy:

pip install /path/to/fplaneserver[doc]
pip install /path/to/fplaneserver[livedoc]

The first install sphinx, the alabaster theme and the numpydoc
extension; the second also installs sphinx-autobuild.

To build the documentation in html format go to the doc directory and run:

make html

The output is saved in _doc/build/html. For the full list of available
targets type make help.

If you are updating the documentation and want avoid the
edit-compile-browser refresh cycle, and you have installed
sphinx-autobuild, type:

make livehtml

then visit http://127.0.0.1:8000. The html documentation is automatically
rebuilt after every change of the source and the browser reloaded.

Please make sure that every module in fplaneserver is present in the
Code documentation.

Code documentation

	astrometry - Astrometry routines

	calc_fluxlim - Fluxlimit calculation routines

	cltools - Commandine tools

	cofes_vis - Visualization routines

	containers - Container structures

	daophot - Daophot helper routines

	extraction - Spectrum extraction routines

	file_tools - File access routines

	fit_radec - RA/DEC fitting routines

	fplane_client - FPlane retrieval routines

	jobsplitter - Jobsplitter - slurm setup tool

	mphelpers - MPHelpers - Parallel processing routines

	mplog - Mplog - Parallel process logging

	photometry - Throughput measurement routines

	programs - FORTRAN program interfaces

	setup_fluxlim - Fluxlimit setup routines

	star_extraction - Stellar Extraction routines

	utils - VDRP utility routines

	vdrp_helpers - VDRP helper routines

	vdrprunner - VDRP batch runner

astrometry - Astrometry routines

Astrometry routine

Module to add astrometry to HETDEX catalgoues and images
Contains python translation of Karl Gebhardt

	
vdrp.astrometry.add_ifu_xy(wdir, offset_exposure_indices)

	Adds IFU x y information to stars used for matching,
and save to xy_expNN.dat.
Requires: getoff.out, radec2.dat
Analogous to rastrom3.

	Parameters

	
	wdirstr

	Work directory.

	offset_exposure_indiceslist

	List of exposure indices to consider.

	
vdrp.astrometry.add_ra_dec(wdir, als_data, ra, dec, pa, fp, radec_outfile='tmp.csv')

	Call add_ra_dec to compute for detections in IFU space the
corresponding RA/DEC coordinates.

New version, direct python call to pyheted.coordinates.tangent_projection.

Requires, fplane.txt
Creates primarely EXPOSURE_tmp.csv but also radec.dat.

	Parameters

	
	wdirstr

	Work directory.

	als_datadict

	Dictionary with als data for each IFU slot.

	rafloat

	Focal plane center RA.

	decfloat

	Focal plane center Dec.

	pafloat

	Positions angle.

	fpFPlane

	Focal plane object.

	radec_outfilestr

	Filename that will contain output from
add_ra_dec (gets overwritten!).

	
vdrp.astrometry.combine_radec(wdir, dither_offsets, PLOT=True)

	Computes - based on the RA Dec information of the individual exposures
(from radec2_exp0?.dat) the final RA/Dec for the shot.

	Parameters

	
	wdirstr

	Work directory.

Notes

Creates radec2_final.dat.
Optionally create a plot indicating the individual exposure positions.

	
vdrp.astrometry.compute_offset(wdir, prefixes, getoff2_radii, add_radec_angoff_trial, add_radec_angoff, add_radec_angoff_trial_dir, offset_exposure_indices, final_ang_offset=None, shout_ifustars='shout.ifustars', ra0=None, dec0=None)

	Requires, fplane.txt and radec.orig. If not ra, dec are passed
explicitly then the values from radec.orig are used. The
pa value from radec.orig is used in any case.
Creates primarely EXPOSURE_tmp.csv but also radec2.dat.

Compute offset in RA DEC by matching detected stars in IFUs
against the shuffle profived RA DEC coordinates.

	Parameters

	
	wdirstr

	Work directory.

	prefixeslist

	List file name prefixes for the collapsed IFU images.

	getoff2_radiilist

	List of matching radii for astrometric offset measurement.

	add_radec_angoff_triallist

	Trial values for angular offsets.

	add_radec_angofffloat

	Angular offset to add during conversion
of x/y coordinate to RA/Dec.

	add_radec_angoff_trial_dirstr

	Directory to save results of angular offset trials.

	offset_exposure_indiceslist

	Exposure indices.

	final_ang_offsetfloat

	Final angular offset to use. This overwrites the values in
add_radec_angoff and add_radec_angoff_trial

	shout_ifustarsstr

	Shuffle output catalog of IFU stars.

	ra0float

	Optionally allows to overwrite use of RA from radec.orig

	dec0float

	Optionally allows to overwrite use of DEC from radec.orig

Notes

Analogous to rastrom3.
Creates radec.dat, radec2.dat and
radec_TRIAL_OFFSET_ANGLE.dat, radec_TRIAL_OFFSET_ANGLE2.dat.

	
vdrp.astrometry.compute_optimal_ang_off(wdir, smoothing=0.05, PLOT=True)

	Computes the optimal angular offset angle by findin the minimal
RMS of a set of different trial angles.

Takes (if exist) all three different exposures into account and computes
weighted average ange (weighted by number of stars that went into the fit).

The RMS(ang_off) are interpolate with a smoothing spline.
The smoothing value is a parameter to this function.

	Parameters

	
	wdirstr

	Directory that holds the angular offset trials
(e.g. 20180611v017/add_radec_angoff_trial)

	Returns

	
	floatOptimal offset angle.

	

	
vdrp.astrometry.cp_addin_files(wdir, addin_dir, subdir='coords')

	Copies addin files. These are
essentially the IFUcen files in a different format.

	Parameters

	
	addin_dirstr

	Directory where the *.addin files are stored.

	wdirstr

	Work directory.

	
vdrp.astrometry.cp_ixy_files(wdir, ixy_dir, subdir='coords')

	Copies ixy files. These are
essentially the IFUcen files in a different format.

	Parameters

	
	ixy_dir_dir :str

	Directory where the *.ixy files are stored.

	wdirstr

	Work directory.

	
vdrp.astrometry.cp_post_stamps(wdir, reduction_dir, night, shotid)

	Copy CoFeS (collapsed IFU images).

	Parameters

	
	wdirstr

	Work directory.

	reduction_dirstr

	Directory that holds panacea reductions.

	nightstr

	Night (e.g. 20180611)

	shotidstr

	ID of shot (e.g. 017)

	Raises

	
	Exception

	

	
vdrp.astrometry.cp_results(tmp_dir, results_dir)

	Copies all relevant result files
from tmp_dir results_dir.

	Parameters

	
	tmp_dirstr

	Temporary work directory.

	results_dirstr

	Final directory for results.

	
vdrp.astrometry.daophot_find(wdir, prefixes, daophot_opt, daophot_sigma, daophot_xmin, daophot_xmax, daophot_ymin, daophot_ymix)

	Run initial daophot find.

	Parameters

	
	wdirstr

	Work directory.

	prefixeslist

	List file name prefixes for the collapsed IFU images.

	daophot_optstr

	Daphot sigma value.

	daophot_sigmafloat

	Filename for daophot configuration.

	daophot_xminfloat

	X limit for daophot detections.

	daophot_xmaxfloat

	X limit for daophot detections.

	daophot_yminfloat

	Y limit for daophot detections.

	daophot_ymixfloat

	Y limit for daophot detections.

	
vdrp.astrometry.daophot_phot_and_allstar(wdir, prefixes, daophot_photo_opt, daophot_allstar_opt, daophot_phot_psf)

	Runs daophot photo and allstar on all IFU postage stamps.
Produces *.ap and *.als files.
Analogous to run4a.

	Parameters

	
	wdirstr

	Work directory.

	prefixeslist

	List file name prefixes for the collapsed IFU images.

	daophot_optstr

	Filename for daophot configuration.

	daophot_photo_optstr

	Filename for daophot photo task configuration.

	daophot_allstar_optstr

	Filename for daophot allstar task configuration.

	
vdrp.astrometry.flux_norm(wdir, mag_max, infile='all.raw', outfile='norm.dat')

	Reads all.raw and compute relative flux normalisation
for the three exposures.

	Parameters

	
	wdirstr

	Work directory.

	mag_maxfloat

	Magnitude limit for flux normalisation.

	infilestr

	Output file of daomaster.

	outfilestr

	Filename for result file.

Notes

Analogous to run9.

	
vdrp.astrometry.getDefaults()

	

	
vdrp.astrometry.getNorm(all_raw, mag_max)

	Comutes the actual normalisation for flux_norm.

	Parameters

	
	all_rawstr

	Output file name of daomaster, usuall all.raw.

	mag_maxfloat

	Magnitude cutoff for normalisation.
Fainter objects will be ignored.

Notes

Analogous to run9.

	
vdrp.astrometry.get_active_slots(wdir, reduction_dir, exposures, night, shotid)

	Figures out which IFU slots actually delivered data, by checking
if a corresponding multifits exists for all exposures in a shot.

	
vdrp.astrometry.get_als_files(fp, exp_prefixes)

	Derives for a list of exposure prefixes a list
of *.als files, but rejects any that refer to an IFU slot
which is not contained in the fplane.

	Parameters

	
	fppyhetdex.het.fplane.FPlane

	Fplane object.

	exp_prefixeslist

	List of epxosure prefixes.

	Returns

	
	(list): List of *.als files.

	

	
vdrp.astrometry.get_exposures(prefixes)

	Computes unique list of exposures from prefixes.

	Parameters

	
	argsargparse.Namespace

	Parsed configuration parameters.

	prefixeslist

	List file name prefixes for the collapsed IFU images

	Returns

	
	(list): Unique list of exposure strings.

	

	
vdrp.astrometry.get_exposures_files(basedir)

	Create list of all file prefixes based
on the existing collapsed IFU files in the current directory.

From files:

20180611T054545_015.fits
…
20180611T054545_106.fits
20180611T055249_015.fits
…
20180611T055249_106.fits
20180611T060006_015.fits
…
20180611T060006_106.fits

Creates:

	{

	‘exp01’ : [‘20180611T054545_015’,…,‘20180611T054545_106’]
‘exp02’ : [‘20180611T055249_015’,…,‘20180611T055249_106’]
‘exp03’ : [‘20180611T060006_015’,…,‘20180611T060006_106’]

}

	Parameters

	
	basedirstr

	Directory to search.

	Returns

	
	OrderedDictOrdered dictionary with pairs of exposure

	string “exp??” and time and list of

	
vdrp.astrometry.get_fiber_coords(wdir, active_slots, dither_offsets, subdir='coords')

	Calls add_ra_dec for all IFU slots and all dithers.

The is the main routine for getcoord which computes the on-sky positions
for all fibers.

Essentially this is a whole bunch of calls like.:

	add_ra_dec –ftype line_detect –astrometry 262.496605 33.194212 262.975922

	–fplane /work/00115/gebhardt/maverick/sci/panacea/shifts/fplane.txt
–ihmps 015 –fout i015_1.csv –dx 0 –dy 0 015.addin

…
add_ra_dec –ftype line_detect –astrometry 262.496605 33.194212 262.975922

–fplane /work/00115/gebhardt/maverick/sci/panacea/shifts/fplane.txt
–ihmps 015 –fout i015_2.csv –dy 1.27 –dx -0.73 015.addin

…
add_ra_dec –ftype line_detect –astrometry 262.496605 33.194212 262.975922

–fplane /work/00115/gebhardt/maverick/sci/panacea/shifts/fplane.txt
–ihmps 015 –fout i015_3.csv –dy 1.27 –dx 0.73 015.addin

	Parameters

	
	wdirstr

	Work directory.

Notes

This creates a list of files iIFUSLOT_DITHERNUM.csv
that store the on-sky fiber coordinates.

	
vdrp.astrometry.get_prefixes(wdir)

	Create list of all file prefixes based
on the existing collapsed IFU files in the current directory.

	Parameters

	
	wdirstr

	Work directory.

	
vdrp.astrometry.get_ra_dec_orig(wdir, reduction_dir, night, shotid, user_pa=-999999.0)

	Reads first of the many multi* file’d headers to get
the RA, DEC, PA guess from the telescope.

	Parameters

	
	wdirstr

	Work directory.

	reduction_dirstr

	Directory that holds panacea reductions.

	nightstr

	Night (e.g. 20180611)

	shotidstr

	ID of shot (e.g. 017)

Notes

Creates radec.orig

	
vdrp.astrometry.get_track(wdir, reduction_dir, night, shotid)

	Reads first of the many multi* file’d headers to get
the track.

	Parameters

	
	wdirstr

	Work directory.

	reduction_dirstr

	Directory that holds panacea reductions.

	nightstr

	Night (e.g. 20180611)

	shotidstr

	ID of shot (e.g. 017)

	Returns

	

	——

	(int): 0 = east track, 1 = west track

Notes

This function is so emparrisingly similar to get_ra_dec_orig
that they should probably be combined.

	
vdrp.astrometry.load_als_data(als_files)

	Load set of als files.

	Parameters

	
	als_fileslist

	List of file names.

	Returns

	

	——

	(OrderedDict): Dictionary with als data for each IFU slot.

	
vdrp.astrometry.main(args)

	Main function.

	
vdrp.astrometry.mk_dithall(wdir, active_slots, reduction_dir, night, shotid, subdir='.')

	This creates the dithall.use file that is required by the downstream
processing functions like photometry and detect.

The file dithall.use contains for every exposure (1-3) and every fiber the
RA/Dec on sky coordinats and the multifits file where the spectrum is
stored and the fiber number.

	
vdrp.astrometry.mk_match_matrix(wdir, ax, exp, image_files, fplane_file, shout_ifu_file, xy_file, radec_file)

	Creates the actual match plot for a specific exposures.
This is a subroutine to mk_match_plots.

	Parameters

	
	wdirstr

	Work directory.

	prefixeslist

	List file name prefixes for the collapsed IFU images.

	axpyplot.axes

	Axes object to plot into.

	expstr

	Exposure string (e.g. exp01)

	image_fileslist

	List of file names.

	fplane_filestr

	Focal plane file filename.

	shout_ifu_filestr

	Shuffle IFU star catalog output filename.

	xy_filestr

	Filename for list of matched stars, aka xy_exp??.dat.

	radec_filestr

	File that contains shot ra dec position.

	
vdrp.astrometry.mk_match_plots(wdir, prefixes)

	Creates match plots.

	Parameters

	
	wdirstr

	Work directory.

	prefixeslist

	List file name prefixes for the collapsed IFU images.

	
vdrp.astrometry.mk_post_stamp_matrix(wdir, prefixes, cofes_vis_vmin, cofes_vis_vmax)

	Create the IFU postage stamp matrix image.

	Parameters

	
	wdirstr

	Work directory.

	prefixeslist

	List file name prefixes for the collapsed IFU images.

	cofes_vis_vminfloat

	Minimum value (= black) for matrix overview plot.

	cofes_vis_vmaxfloat

	Maximum value (= black) for matrix overview plot.

	
vdrp.astrometry.mkmosaic(wdir, prefixes, night, shotid, mkmosaic_angoff)

	Creates mosaic fits image.

	Parameters

	
	wdirstr

	Work directory.

	prefixeslist

	List file name prefixes for the collapsed IFU images.

	nightstr

	Night (e.g. 20180611)

	shotidstr

	ID of shot (e.g. 017)

	mkmosaic_angofffloat

	Angular offset to add for creation of mosaic image.

	
vdrp.astrometry.mktot(wdir, prefixes, mktot_ifu_grid, mktot_magmin, mktot_magmax, mktot_xmin, mktot_xmax, mktot_ymin, mktot_ymax, dither_offsets)

	Reads all *.als files. Put detections on a grid
corresponding to the IFU position in the focal plane as defined in
config/ifu_grid.txt (should later become fplane.txt.
Then produces all.mch.

	Parameters

	
	wdirstr

	Work directory.

	prefixeslist

	List file name prefixes for the collapsed IFU images.

	mktot_ifu_gridstr

	Name of file that holds gird of IFUs offset fit (mktot).

	mktot_magminfloat

	Magnitude limit for offset fit.

	mktot_magmaxfloat

	Magnitude limit for offset fit.

	mktot_xminfloat

	X limit for offset fit.

	mktot_xmaxfloat

	X limit for offset fit.

	mktot_yminfloat

	Y limit for offset fit.

	mktot_ymaxfloat

	Y limit for offset fit.

Notes

Analogous to run6 and run6b.

	
vdrp.astrometry.parseArgs(args)

	Parses configuration file and command line arguments.
Command line arguments overwrite configuration file settiongs which
in turn overwrite default values.

	Parameters

	
	argsargparse.Namespace

	Return the populated namespace.

	
vdrp.astrometry.project_xy(wdir, radec_file, fplane_file, ra, dec)

	Translate all catalog stars to x/y to display then and to
see which ones got matched.
Call pyhetdex tangent_plane’s functionality to project
ra,dec to x,y.

	Parameters

	
	wdirstr

	Work directory.

	radec_filestr

	File that contains shot ra dec position.

	fplane_filestr

	Focal plane file filename.

	ralist

	List of ra positions (in float, degree).

	declist

	List of dec positions (in float, degree).

	
vdrp.astrometry.redo_shuffle(wdir, ra, dec, track, acam_magadd, wfs1_magadd, wfs2_magadd, shuffle_cfg, fplane_txt, night, catalog=None)

	Reruns shuffle to obtain catalog of IFU stars.

Creates a number of output files, most importantly
shout.ifustars which is used as catalog for the offset computation.

	Parameters

	
	wdirstr

	Work directory.

	rafloat

	Right ascension in degrees.

	decfloat

	Declination in degrees.

	trackint

	East or west track (0, 1)

	acam_magaddfloat

	do_shuffle acam magadd.

	wfs1_magaddfloat

	do_shuffle wfs1 magadd.

	wfs2_magaddfloat

	do_shuffle wfs2 magadd.

	
vdrp.astrometry.rmaster(wdir)

	Executes daomaster. This registers the sets of detections
for the thre different exposrues with respec to each other.

	Parameters

	
	wdirstr

	Work directory.

Notes

Analogous to run8b.

	
vdrp.astrometry.run()

	

calc_fluxlim - Fluxlimit calculation routines

Fluxlimit routine

Contains python translation of Karl Gebhardt

	
vdrp.calc_fluxlim.calc_fluxlim(args, workdir)

	Equivalent of the rflim0 script and of mklistfl and the rspfl3f scripts.

Calculate the flux limit for a given night and shot, looping over a
(by default) 70 x 70 arcsecond grid

	Parameters

	
	argsstruct

	The arguments structure

	
vdrp.calc_fluxlim.calc_fluxlim_entrypoint()

	

	
vdrp.calc_fluxlim.getDefaults()

	

	
vdrp.calc_fluxlim.get_arguments(parser)

	Add command line arguments for the photometry routines, this function
can be called from another tool.

	Parameters

	
	parserargparse.ArgumentParser

	

	
vdrp.calc_fluxlim.main(jobnum, args)

	Main function.

	
vdrp.calc_fluxlim.parseArgs(argv)

	Parses configuration file and command line arguments.
Command line arguments overwrite configuration file settiongs which
in turn overwrite default values.

	Args:

	args (argparse.Namespace): Return the populated namespace.

	
vdrp.calc_fluxlim.update_im3d_header(ra, dec, wdir)

	Add header keywords to the image3d.fits

cltools - Commandine tools

Interface to astrometry command line tools

Module provide interface routines to the command line
tools that are use in Karl Gebhardt’s astrometry procedure.

	
vdrp.cltools.getoff2(fnradec, fnshuffle_ifustars, radius, ra_offset, dec_offset, logging=None)

	Interface to getoff2.

	Args:

	fnradec (string): Filename for detections.
fnshuffle_ifustars (string): Filename of catalog of stars to match to.
radius (float): Matching radius.
ra_offset (float): RA offset to apply to detecions in fnradec

before computing offset.

	dec_offset (float): Dec offset to apply to detecions in fnradec

	before computeing offset.

	logging (module): Pass logging module if.

	Otherwise output is passed to the screen.

	Notes:

	Creates files getoff.out, getoff2.out and intermediate
file shout.ifu.

	Retruns:

	new_ra_offset (float), new_dec_offset (float): New offset after
matching (input offset added).

	
vdrp.cltools.immosaicv(prefixes, fplane_file='fplane.txt', logging=None)

	Interface to immosaicv which creates
a mosaic give a set of fits files and x y coordinates.
Requires infp.
This function will prepare the necessary infp file that
is read by immosaicv command line tool.
Format of the latter is
20180611T054545_015.fits 015 -450.0 -50.0
20180611T054545_022.fits 022 -349.743 250.336
20180611T054545_023.fits 023 -349.798 150.243
20180611T054545_024.fits 024 -350.0 50.0
…

	Args:

	prefixes (list): List file name prefixes for the collapsed IFU images.
fplane_file (str): Fplane file name.
logging (module): Pass logging module if.
Otherwise output is passed to the screen.

	
vdrp.cltools.imrot(fitsfile, angle, logging=None)

	Interface to imrot.
Rotates fits image by given angle.

	Notes:

	Creates file imrot.fits.

	Args:

	fitsfile (str): Input fits file name.
angle (float): Rotation angle.

cofes_vis - Visualization routines

	
vdrp.cofes_vis.cofes_4x4_plots(prefix='', outfile_name='CoFeS_plots.png', vmin=-15, vmax=25, logging=None)

	dir is a string containing the directory with the CoFeS files you wish
to plot. If its the local directory you can leave it as an empty string

outfile_name is a string with the output file name. This will be placed
in the dir directory

the ifu order is
073 083 093 103
074 084 094 104
075 085 095 105
076 086 096 106

	
vdrp.cofes_vis.cofes_plots(ifunums, filename_array, outfile_name, vmin=-15, vmax=25, logging=None)

	filename_array is an array-like object that contains the filenames
of fits files to plot. The output plot will be the shape of the
input array.

outfile is the output file name including the extension, such as out.fits.

vmin and vmax set the stretch for the images. They are in units of counts;
Pixels with vmin and below counts are black. Pixels with vmax and above
counts are white.

	
vdrp.cofes_vis.main()

	

containers - Container structures

	
exception vdrp.containers.NoShotsException

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

	
class vdrp.containers.DithAll(ra=0.0, dec=0.0, ifuslot='', x=0.0, y=0.0, x_fp=0.0, y_fp=0.0, filename='', timestamp='', expname='')

	

	
class vdrp.containers.DithAllFile(filename=None)

	
	
where(cond)

	

	
class vdrp.containers.Spectrum

	This class encapsulates the content of a tmp*.dat spectrum file

	Attributes

	
	wlfloat

	Wavelength

	cntsfloat

	Counts of the spectrum

	flxfloat

	Flux of the spectrum

	amp_normfloat

	Ampliflier normalization

	tp_normfloat

	Throughput normalization

	ftf_normfloat

	Fiber to fiber normalization

	err_ctsfloat

	

	err_cts_localfloat

	

	err_max_fluxfloat

	

	
read(fname)

	

	
class vdrp.containers.StarObservation(num=0.0, night=-1, shot=-1, ra=-1, dec=-1, x=-1, y=-1, fname='', shotname='', expname='', offset_ra=-1, offset_dec=1)

	Data for one spectrum covering a star observation. This corresponds to the
data stored in the l1 file with additions from other files

	Attributes

	
	numint

	Star number

	nightint

	Night of the observation

	shotint

	Shot of the observation

	rafloat

	Right Ascension of the fiber center

	decfloat

	Declination of the fiber center

	xfloat

	Offset of fiber relative to IFU center in x direction

	yfloat

	Offset of fiber relative to IFU center in y direction

	full_fnamestr

	Filename of the multi extension fits file.

	shotnamestr

	NightvShot shot name

	expnamestr

	Name of the exposure.

	distfloat

	Distance of the fiber from the star position

	offset_rafloat

	Offset in ra of the fiber from the star position

	offset_decfloat

	Offset in dec of the fiber from the star position

	fnamestr

	Basename of the fits filenname

	ifuslotstr

	IFU slot ID

	avgfloat

	Average of the spectrum

	avg_normfloat

	

	avg_errorfloat

	Error of the average of the spectrum

	structazfloat

	Azimuth of the telescope structure, read from the image header

	
set_fname(fname)

	Split the full filename into the base name and the ifuslot

daophot - Daophot helper routines

Interface to daophot routines.

Module provides interface to daophot.

	
exception vdrp.daophot.DaophotException

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

	
class vdrp.daophot.DAOPHOT_ALS(NL, NX, NY, LOWBAD, HIGHBAD, THRESH, AP1, PH_ADU, RNOISE, FRAD, data)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Reads DAOPHOT ALS files.

	
static read(als_file)

	Reads daophot als file.

	Notes:

	Creates file imrot.fits.

	Args:

	als_file (str): Input file name.

	Returns:

	
	(DAOPHOT_ALS): Object containing all the infromation

	in the als file.

	
vdrp.daophot.allstar(prefix, psf='use.psf', logging=None)

	Interface to allstar.

	Notes:

	Replaces second part of rdsub.
Requires allstar.opt and use.psf, PREFIX.ap to be in place.

	Args:

	prefix (str): File name prefix to call daophot phot for.
psf (str): File name for PSF model.
logging (module): Pass logging module if.
Otherwise output is passed to the screen.

	
vdrp.daophot.daomaster(logging=None)

	Interface to daomaster.

	Notes:

	replaces “rmaster0”.
Requires 20180611T054545tot.als
and all.mch to be in place.

	Args:

	logging (module): Pass logging module if.
Otherwise output is passed to the screen.

	
vdrp.daophot.daophot_find(prefix, sigma, logging=None)

	Interface to daophot find.

	Notes:

	Replaces second part of rdcoo.
Requires daophot.opt to be in place.

	Args:

	prefix (str): File name prefix to call daophot phot for.
sigma (float): Daophot phot sigma parameter.
logging (module): Pass logging module if.

Otherwise output is passed to the screen.

	
vdrp.daophot.daophot_phot(prefix, logging=None)

	Interface to daophot phot.

	Notes:

	Replaces first part of rdsub.
Requires photo.opt to be in place.

	Args:

	prefix (str): File name prefix to call daophot phot for.
logging (module): Pass logging module if.
Otherwise output is passed to the screen.

	
vdrp.daophot.filter_daophot_out(file_in, file_out, xmin, xmax, ymin, ymax)

	Filter daophot coo ouput files. For close-to-edge detections.

Read the daophot *.coo output file and rejects detections
that fall outside xmin - xmax and ymin - ymax.
Translated from
awk ‘{s+=1; if (s<=3||($2>4&&$2<45&&$3>4&&$3<45)) print $0}’ $1.coo > $1.lst

Notes:
Args:

file_in (str): Input file name.
file_out (str): Output file name.
xmin (float): Detection x coordinate must be larger than this vaule.
xmax (float): Detection x coordinate must be smaller than this vaule.
ymin (float): Detection y coordinate must be larger than this vaule.
ymax (float): Detection y coordinate must be smaller than this vaule.

	
vdrp.daophot.mk_daophot_opt(args)

	

	
vdrp.daophot.test_input_files_exist(input_files)

	Takes a list of files names and check if they are in place.
Raises DaophotException if not.

	Args:

	input_files (list): List of file names to check.

	Raises:

	DaophotException: If not all given files are present.

extraction - Spectrum extraction routines

Spectrum extraction routines

Contains python translation of Karl Gebhardt

	
vdrp.extraction.extract_star_spectrum(starobs, args, wl, wlr, wdir, prefix='')

	Equivalent of the rextsp[1] and parts of the rsp1b scripts.

Extract stellar spectra, creating the tmp*.dat files. If prefix
is set, it is prefixed to the tmp*dat file names.

	Parameters

	
	starobslist

	List with StarObservation objects.

	argsstruct

	The arguments structure

	wdirstr

	Name of the work directory

	prefixstr (optional)

	Optional prefix for the output filenames.

	Returns

	
	list

	List of tmp*dat filenames created.

	
vdrp.extraction.get_star_spectrum_data(ra, dec, args, nightshot, multi_shot=False, dithall=None)

	This extracts the data about the different observations of the same star
on different ifus.

This is essentially the information stored in the l1 file.

	Parameters

	
	rafloat

	Right Ascension of the star.

	decfloat

	Declination of the star.

	argsstruct

	The arguments structure

	nightshottuple

	Tuple of strings with night and shot to search. if None, use all shots
containing the given RA /DEC

	
vdrp.extraction.get_structaz(starobs, path)

	Equivalent of the rgetadc script
Read the STRUCTAZ parameter from the multi extension fits files and fill
in the StarObservation entries.

file_tools - File access routines

	
vdrp.file_tools.get_dithall_file(basedir, night, shot)

	

	
vdrp.file_tools.get_mulitfits_file(basedir, night, shot, expname, fname)

	

	
vdrp.file_tools.get_norm_file(path, fname)

	

	
vdrp.file_tools.get_throughput_file(path, night, shot)

	Equivalent of rtp0 script.

Checks if a night/shot specific throughput file exists.

If true, return the filename, otherise the filename
for an average throughput file.

	Parameters

	
	pathstr

	Path to the throughput files

	shotnamestr

	Name of the shot

fit_radec - RA/DEC fitting routines

RA /DEC fitting routine, equivalent of rsp3f script

Contains python translation of Karl Gebhardt

	
vdrp.fit_radec.fit_radec(args)

	Equivalent of the rsp3f script

	argsstruct

	The arguments structure

	
vdrp.fit_radec.fitradec_entrypoint()

	

	
vdrp.fit_radec.getDefaults()

	

	
vdrp.fit_radec.get_arguments(parser)

	Add command line arguments for the photometry routines, this function
can be called from another tool.

	Parameters

	
	parserargparse.ArgumentParser

	

	
vdrp.fit_radec.main(jobnum, args)

	Main function.

	
vdrp.fit_radec.parseArgs(argv)

	Parses configuration file and command line arguments.
Command line arguments overwrite configuration file settiongs which
in turn overwrite default values.

	Args:

	args (argparse.Namespace): Return the populated namespace.

fplane_client - FPlane retrieval routines

	
vdrp.fplane_client.get_fplane(filename, datestr='', actpos=True, full=False)

	Obtains fplane file from fplane server at MPE.

	Args:

	filename (str) : Filename that the fplane file should be saved to.
datestr (str): Datestring of format YYYYMMDD (e.g. 20180611).

	
vdrp.fplane_client.main()

	

	
vdrp.fplane_client.retrieve_fplane(night, fplane_txt, wdir)

	Saves the fplane file to the target directory
and names it fplane.txt.

Args:
fplane_txt (str) : Either a specific fplane file is specified here, ‘DATABASE’ is passed,

or a file pattern is provided e.g. fplane_YYYYMMDD.txt.
In case of the latter a substring of format YYYYMMDD is
expected. The routine will then search
for an fplane file of the current date or pick the next
older one. E.g. if shot 2080611v017 is to be analysed
and fplane files fplane_2080610.txt and
fplane_2080615.txt exist, then fplane_2080610.txt will
be picked. In the case of DATABASE the fplane file is
retrieved from https://luna.mpe.mpg.de/fplane/.

jobsplitter - Jobsplitter - slurm setup tool

	
vdrp.jobsplitter.create_job_file(fname, commands, n_nodes, jobs_per_file, jobs_per_node, args)

	

	
vdrp.jobsplitter.getDefaults()

	Get the defaults for the argument parser. Separating this out
from the get_arguments routine allows us to use different defaults
when using the jobsplitter from within a differen script.

	
vdrp.jobsplitter.get_arguments(parser)

	Add command line arguments for the jobsplitter, this function can be
called from another tool, adding job splitter support.

	Parameters

	
	parserargparse.ArgumentParser

	

	
vdrp.jobsplitter.main(args)

	

	
vdrp.jobsplitter.n_needed(njobs, limit)

	

	
vdrp.jobsplitter.parse_args(argv)

	Command line parser

	Parameters

	
	argvlist of strings

	list to parsed

	Returns

	
	namespace:

	Parsed arguments

	
vdrp.jobsplitter.run()

	

mphelpers - MPHelpers - Parallel processing routines

	
class vdrp.mphelpers.MPPool(jobnum, num_proc)

	Pool of threads consuming tasks from a queue

	
add_task(func, *args, **kargs)

	Add a task to the queue

	
wait_completion()

	Wait for completion of all the tasks in the queue

	
class vdrp.mphelpers.MPWorker(name, tasks)

	Bases: multiprocessing.process.Process

Thread executing tasks from a given tasks queue

	
run()

	Method to be run in sub-process; can be overridden in sub-class

	
class vdrp.mphelpers.ThreadPool(num_threads)

	Pool of threads consuming tasks from a queue

	
add_task(func, *args, **kargs)

	Add a task to the queue

	
wait_completion()

	Wait for completion of all the tasks in the queue

	
class vdrp.mphelpers.ThreadShutDownException

	

	
class vdrp.mphelpers.ThreadWorker(name, tasks)

	Bases: threading.Thread [https://docs.python.org/2.7/library/threading.html#threading.Thread]

Thread executing tasks from a given tasks queue

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
vdrp.mphelpers.mp_run(func, args, rargv, parser)

	

	
vdrp.mphelpers.shutdownThread()

	

mplog - Mplog - Parallel process logging

	
class vdrp.mplog.MultiProcessingHandler(name, sub_handler=None)

	Bases: logging.Handler

	
_format_record(record)

	

	
_receive()

	

	
close()

	Tidy up any resources used by the handler.

This version removes the handler from an internal map of handlers,
_handlers, which is used for handler lookup by name. Subclasses
should ensure that this gets called from overridden close()
methods.

	
emit(record)

	Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so
raises a NotImplementedError.

	
send(s)

	

	
setFormatter(fmt)

	Set the formatter for this handler.

	
vdrp.mplog.install_mp_handler(logger=None)

	Wraps the handlers in the given Logger with an MultiProcessingHandler.
:param logger: whose handlers to wrap. By default, the root logger.

	
vdrp.mplog.setup_mp_logging(logfile, loglevel)

	Setup the logging and prepare it for use with multiprocessing

photometry - Throughput measurement routines

Photometry routine

Contains python translation of Karl Gebhardt

	
class vdrp.photometry.ShuffleStar(starid='', shotid='', shuffleid=-1, ra=-1.0, dec=-1.0, u=99.0, g=99.0, r=99.0, i=99.0, z=99.0, catalog='None')

	Class to store the information about one star from the shuffle output

	Attributes

	
	staridint

	ID for the star.

	shotidint

	Shot number of the star observation

	shuffleidint

	ID of the star in shuffle catalog

	rafloat

	Right ascension

	decfloat

	Declination

	catalogstr

	Catalog name used to find these.

	ufloat

	U-Band magnitude from the shuffle catalog

	gfloat

	G-Band magnitude from the shuffle catalog

	rfloat

	R-Band magnitude from the shuffle catalog

	ifloat

	I-Band magnitude from the shuffle catalog

	zfloat

	Z-Band magnitude from the shuffle catalog

	
vdrp.photometry.extract_star_single_shot(ra, dec, starid, args, dithall=None)

	Equivalent of the rsp1a2b script.

Run the stellar extraction code for a given ra / dec position.

	Parameters

	
	rafloat

	Right Ascension of the star.

	decfloat

	Declination of the star.

	staridint

	ID to give to the star / position

	argsstruct

	The arguments structure

	
vdrp.photometry.getDefaults()

	

	
vdrp.photometry.get_arguments(parser)

	Add command line arguments for the photometry routines, this function
can be called from another tool.

	Parameters

	
	parserargparse.ArgumentParser

	

	
vdrp.photometry.get_g_band_throughput(args)

	Measure the throughput in the SDSS g-Band
Equivalent of the rgettp0 script

	Parameters

	
	argsstruct

	The arguments structure

	
vdrp.photometry.get_sedfits(starobs, args, wdir, nomove=False)

	Run quick_fit to generate the SED fits, if available.

If quick_fit cannot be imported, fall back to copying the files
from sed_fit_dir

	
vdrp.photometry.get_shuffle_stars(nightshot, args, wdir)

	Rerun shuffle and find the all stars for a given night / shot.

	Parameters

	
	nightshotstr

	Night + shot name to work on.

	argsargparse.Namespace

	The script parameter namespace

	
vdrp.photometry.main(jobnum, args)

	Main function.

	
vdrp.photometry.mk_sed_throughput_curve(args)

	Equivalent of the rgett0b script.

	Parameters

	
	argsstruct

	The arguments structure

	
vdrp.photometry.parseArgs(argv)

	Parses configuration file and command line arguments.
Command line arguments overwrite configuration file settiongs which
in turn overwrite default values.

	Args:

	args (argparse.Namespace): Return the populated namespace.

	
vdrp.photometry.run()

	

	
vdrp.photometry.run_biwt(data, outfile, wdir)

	Calculate biweight of the supplied data.

	Parameters

	
	datalist

	List of the data to be run through biwt.

	Returns

	
	n, biwt, error

	

	
vdrp.photometry.run_combsed(sedlist, sigmacut, rmscut, outfile, wdir, plotfile=None)

	
	Parameters

	
	sedlistlist

	List of filenames of SED fits

	sigmacutfloat

	Cut value for sigma

	rmscutfloat

	Cut value for rms

	outfilestr

	Output filename

	plotfilestr (optional)

	Optional plot output filename

	Returns

	
	n, biwt, error

	

	
vdrp.photometry.run_getsdss(filename, sdss_file, wdir)

	Run getsdss on filename. Equivalent to rsdss file.

	Parameters

	
	filenamestr

	Filename with spectral data

	sdss_filestr

	Full path and filename to the sdss g-band filter curve.

	Returns

	
	The flux in the g-Band.

	

	
vdrp.photometry.run_shuffle_photometry(args, wdir)

	Equivalent of the rsetstar script. Find all shuffle stars observed
for the night / shot given on the command line, and the loop over all
stars ra / dec.

	Parameters

	
	argsstruct

	The arguments structure

programs - FORTRAN program interfaces

	
vdrp.programs.call_fit2d(ra, dec, outname, wdir)

	Call fit2d. Calculate the 2D spatial fit based on fwhm, fiber locations,
and ADC. This convolves the PSF over each fiber, for a given input
position. It fits the ampltiude, minimizing to a chi^2.

Requires input files generated by run_fit2d

	Parameters

	
	rafloat

	Right Ascension of the star.

	decfloat

	Declination of the star.

	outnamestr

	Output filename.

	wdirstr

	Name of the work directory

	
vdrp.programs.call_fitem(wl, wdir)

	Call fitem requires input files created by run_fitem

The line fitter. It fits a gauss-hermite. input is fitghsp.in.

	Parameters

	
	wlfloat

	Wavelength

	
vdrp.programs.call_fitonevp(wave, outname, wdir)

	Call fitonevp

Requires fitghsp.in created by apply_factor_spline

	Parameters

	
	wavefloat

	Wavelength

	outnamestr

	Output filename

	wdirstr

	Name of the work directory

	
vdrp.programs.call_getnormexp(nightshot, wdir)

	Call getnormexp. Get fwhm and relative normalizations for the frames.

	Parameters

	
	namestr

	Observation name

	
vdrp.programs.call_imextsp(filename, ifuslot, wl, wlw, tpavg, norm, outfile, wdir)

	Equivalent of the rextsp script,
a wrapper around the imextsp fortran routine.

Extracts the spectrum from the multi fits files and writes the tmp*dat.
This also calculates the appropriate photon errors, using counting and
sky residual errors. This applies the throughput and fiber to fiber.

	Parameters

	
	filenamestr

	The filename to process

	ifuslotstr

	The ifuslot name

	wlfloat

	The central extraction wavelength

	wlwfloat

	The width of the extraction window around wl

	tpavgfloat

	Throughput average for the spectrum

	normstr

	File with fiber to fiber normaliztion for the spectrum

	outfilestr

	Name of the output filename

	wdirstr

	Name of the work directory

	
vdrp.programs.call_mkimage(ra, dec, starobs, wdir)

	Call mkimage, equivalent of rmkim

Reads the out2d file and creates three images of the
emission line data, best fit model and residuals, called
im[123].fits.

	Parameters

	
	rafloat

	Right Ascension of the star.

	decfloat

	Declination of the star.

	starobslist

	List of StarObservation objects for the star

	
vdrp.programs.call_mkimage3d(wdir)

	Run the mkimage3d command, creating an output file called image3d.fits

	
vdrp.programs.call_sumspec(starname, wdir)

	Call sumpspec. Sums a set of spectra, and then bins to 100AA bins.
Used for SED fitting.

	Parameters

	
	starnamestr

	Star name used to create the outputn filename (adds specf.dat)

	
vdrp.programs.call_sumsplines(nspec, wdir)

	Call sumsplines, calculate a straight sum of the spectra in a list,
including errors. Expects the spectra to be called tmp101 to
tmp100+nspec.

Creates a file called splines.out

	Parameters

	
	nspecint

	Number of spectra to read.

	wdirstr

	Name of the work directory

	
vdrp.programs.run_fitradecsp(ra, dec, step, nstep, w_center, w_range, ifit1, starobs, specfiles, wdir)

	Setup and call fitradecsp. This creates a file called spec.out

	Parameters

	
	starobslist

	List of StarObservation structures one for each fiber

	specfileslist

	List of filename of the different spec files

setup_fluxlim - Fluxlimit setup routines

Fluxlimit routine

Contains python translation of Karl Gebhardt

	
exception vdrp.setup_fluxlim.NoShotsException

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

	
vdrp.setup_fluxlim.getDefaults()

	

	
vdrp.setup_fluxlim.parseArgs(argv)

	Parses configuration file and command line arguments.
Command line arguments overwrite configuration file settiongs which
in turn overwrite default values.

	Args:

	args (argparse.Namespace): Return the populated namespace.

	
vdrp.setup_fluxlim.setup_fluxlim(args, rargs)

	This is equivalent to the rflim0 and rsetfl scripts.

Determine the input values for the flux limit calculation,
create the input file, create the slurm file using the jobsplitter
and launch it using sbatch

	
vdrp.setup_fluxlim.setup_fluxlim_entrypoint()

	Entrypoint to run the flux limit calculation for one night / shot
combination

star_extraction - Stellar Extraction routines

Star Extraction routine. Equivalent of rsp1 script.

Extract star at a given RA/DEC using all shots overlapping with
these coordinates.

Contains python translation of Karl Gebhardt

	
vdrp.star_extraction.apply_factor_spline(factor, wdir)

	Equivalent of the rawksp[12] scripts

Apply the factor to the splines.out file. The factor is the number
of individual shots the star was observed in.

	Parameters

	
	factorint

	The factor to apply.

	wdirstr

	Name of the work directory

	
vdrp.star_extraction.average_spectra(specfiles, starobs, wl, wlrange, wdir)

	Average all observed spectra and fill in the corresponding entries in the
StarObservation class.

This corresponds to the ravgsp0 script

	Parameters

	
	specfileslist

	List of spectrum filenames.

	starobslist

	List with StarObservation objects.

	wlfloat

	Central wavelength for the averaging.

	wlrangefloat

	Half width of the wavelength range for averaging.

	
vdrp.star_extraction.average_spectrum(spec, wlmin, wlmax)

	Corresponds to ravgsp0 script. Calculate the average of the
spectrum in the range [wlmin, wlmax]

	Parameters

	
	specSpectrum

	Spectrum class object

	wlminfloat

	Minimum wavelength of range to average.

	wlmaxfloat

	Maximum wavelength of range to average.

	Returns

	
	average, normaliztaion and uncertainty, equivalent to the spavg*.dat files.

	

	
vdrp.star_extraction.copy_stardata(starname, starid, wdir)

	Copies the result files from workdir results_dir as done by rspstar.

	Parameters

	
	starnamestr

	Star name to copy over.

	staridint

	Star ID to use for the final filename.

	results_dirstr

	Final directory for results.

	
vdrp.star_extraction.extract_star(args)

	Equivalent of the rsp1a2b script.

Run the stellar extraction code for a given ra / dec position.

	Parameters

	
	argsstruct

	The arguments structure

	
vdrp.star_extraction.getDefaults()

	

	
vdrp.star_extraction.get_arguments(parser)

	Add command line arguments for the photometry routines, this function
can be called from another tool.

	Parameters

	
	parserargparse.ArgumentParser

	

	
vdrp.star_extraction.main(jobnum, args)

	Main function.

	
vdrp.star_extraction.parseArgs(argv)

	Parses configuration file and command line arguments.
Command line arguments overwrite configuration file settiongs which
in turn overwrite default values.

	Args:

	args (argparse.Namespace): Return the populated namespace.

	
vdrp.star_extraction.run_fit2d(ra, dec, starobs, seeing, outname, wdir)

	Prepare input files for running fit2d, and run it.

	Parameters

	
	rafloat

	Right Ascension of the star.

	decfloat

	Declination of the star.

	starobslist

	List with StarObservation objects.

	seeingfloat

	Assumed seeing for the observation.

	outnamestr

	Output filename.

	
vdrp.star_extraction.run_fitem(wl, outname, wdir)

	Prepare input file for fitem, and run it.

	Parameters

	
	wlfloat

	Wavelength

	outnamestr

	Base output filename.

	
vdrp.star_extraction.run_sumlineserr(specfiles, wdir)

	Prepare input and run sumlineserr. It sums a set of spectra, and then bins
to 100AA bins. Used for SED fitting.

	Parameters

	
	specfileslist

	List of spectrum filenames.

	
vdrp.star_extraction.star_extract_entrypoint()

	

utils - VDRP utility routines

Utility functions for virus reductions

This code relies on original software from:
Copyright (c) 2011-2016, Astropy Developers
Copyright (c) 2012, Free Software Foundation

	
vdrp.utils.bindir()

	

	
vdrp.utils.biweight_bin(xv, x, y)

	Compute the biweight location with a moving window of size “order”

	
vdrp.utils.biweight_filter(a, order, ignore_central=3, c=6.0, M=None, func=None)

	

	
vdrp.utils.biweight_filter2d(a, Order, Ignore_central=(3, 3), c=6.0, M=None, func=None)

	Compute the biweight location with a moving window of size “order”

	
vdrp.utils.biweight_location(a, c=6.0, M=None, axis=None, eps=1e-08)

	Copyright (c) 2011-2016, Astropy Developers

Compute the biweight location for an array.

Returns the biweight location for the array elements.
The biweight is a robust statistic for determining the central
location of a distribution.

The biweight location is given by the following equation

where M is the sample mean or if run iterative the initial guess,
and u_i is given by

where MAD is the median absolute deviation.

For more details, see Beers, Flynn, and Gebhardt, 1990, AJ, 100, 32B

	Parameters

	
	aarray-like

	Input array or object that can be converted to an array.

	cfloat, optional

	Tuning constant for the biweight estimator. Default value is 6.0.

	Mfloat, optional

	Initial guess for the biweight location.

	axistuple, optional

	tuple of the integer axis values ot calculate over. Should be sorted.

	Returns

	

	——-

	

	biweight_locationfloat

	Returns the biweight location for the array elements.

See also

median_absolute_deviation, biweight_midvariance

Examples

This will generate random variates from a Gaussian distribution and return
the biweight location of the distribution:

>>> from utils import biweight_location
>>> from numpy.random import randn
>>> randvar = randn(10000)
>>> cbl = biweight_location(randvar)

	
vdrp.utils.biweight_midvariance(a, c=15.0, M=None, axis=None, eps=1e-08, niter=1)

	Copyright (c) 2011-2016, Astropy Developers

Compute the biweight midvariance for an array.

Returns the biweight midvariance for the array elements.
The biweight midvariance is a robust statistic for determining
the midvariance (i.e. the standard deviation) of a distribution.

The biweight location is given by the following equation

where is given by

where MAD is the median absolute deviation.

 is the number of data for which holds,
while the summations are over all i up to n:

This is slightly different than given in the reference below, but
results in a value closer to the true midvariance.

The midvariance parameter c is typically 9.0.

For more details, see Beers, Flynn, and Gebhardt, 1990, AJ, 100, 32B

	Parameters

	
	aarray-like

	Input array or object that can be converted to an array.

	cfloat

	Tuning constant for the biweight estimator. Default value is 9.0.

	Mfloat, optional

	Initial guess for the biweight location.

	axistuple, optional

	tuple of the integer axis values ot calculate over. Should be sorted.

	Returns

	
	biweight_midvariancefloat

	Returns the biweight midvariance for the array elements.

See also

median_absolute_deviation, biweight_location

Examples

This will generate random variates from a Gaussian distribution and return
the biweight midvariance of the distribution:

>>> from utils import biweight_midvariance
>>> from numpy.random import randn
>>> randvar = randn(10000)
>>> scl = biweight_midvariance(randvar)

	
vdrp.utils.configdir()

	

	
vdrp.utils.createDir(directory)

	Creates a directory.
Does not raise an excpetion if the directory already exists.

	Args:

	directory (string): Name for directory to create.

	
vdrp.utils.is_outlier(points, thresh=3.5)

	Copyright (c) 2012, Free Software Foundation

Returns a boolean array with True if points are outliers and False
otherwise.

	
vdrp.utils.mangle_config_pathname(path)

	

	
vdrp.utils.matrixCheby2D_7(x, y)

	

	
vdrp.utils.median_absolute_deviation(a, axis=None)

	Copyright (c) 2011-2016, Astropy Developers

Compute the median absolute deviation.

Returns the median absolute deviation (MAD) of the array elements.
The MAD is defined as median(abs(a - median(a))).

	Parameters

	
	aarray-like

	Input array or object that can be converted to an array.

	axistuple, optional

	Axis along which the medians are computed. The default (axis=None)
is to compute the median along a flattened version of the array.

	Returns

	
	median_absolute_deviationndarray

	A new array holding the result. If the input contains
integers, or floats of smaller precision than 64, then the output
data-type is float64. Otherwise, the output data-type is the same
as that of the input.

See also

numpy.median

Examples

This will generate random variates from a Gaussian distribution and return
the median absolute deviation for that distribution:

>>> from utils import median_absolute_deviation
>>> from numpy.random import randn
>>> randvar = randn(10000)
>>> mad = median_absolute_deviation(randvar)

	
vdrp.utils.print_bindir()

	

	
vdrp.utils.print_conffile()

	

	
vdrp.utils.print_configdir()

	

	
vdrp.utils.read_all_mch(all_mch)

	Reads all.mch and returns dither information.

	Args:

	all_mch (str): Filename, typically all.mch.

	Returns:

	
	(OrdereDict): Dictionary of float tuples, with dither offsets,

	e.g. {1 : (0.,0.), 2 : (1.27,-0.73), 3 : (1.27,0.73)}

	
vdrp.utils.read_radec(filename)

	Reads radec.dat file and returns ra,dec,pa.

	Args:

	filename (str): Filename, typically radec.dat or radec2.dat.

	Returns:

	float,float,float: 3 element list with RA, DEC and PA

	
vdrp.utils.rm(ff)

	Takes a list of files names and deletes them.
Does not raise an Exception if a specific file was not in place.

	Args:

	ff (list): List of file names to delete.

	
vdrp.utils.setup_logging(logger, logfile, loglevel)

	

	
vdrp.utils.write_conf_file(fname)

	

	
vdrp.utils.write_radec(ra, dec, pa, filename)

	Creates radec.dat-type file and returns ra,dec,pa.

	Args:

	ra (float): Right ascension
dec (float): declination
pa (float): position angle
filename (str): Filename, typically radec.dat or radec2.dat.

vdrp_helpers - VDRP helper routines

	
class vdrp.vdrp_helpers.VdrpInfo(*args, **kwargs)

	Bases: collections.OrderedDict [https://docs.python.org/2.7/library/collections.html#collections.OrderedDict]

	
classmethod read(dir, filename='vdrp_info.pickle')

	

	
save(dir, filename='vdrp_info.pickle')

	

	
vdrp.vdrp_helpers.read_data(filename)

	

	
vdrp.vdrp_helpers.run_command(cmd, input=None, wdir=None)

	Run and fortran command sending the optional input string on stdin.

	Parameters

	
	cmdstr

	The command to be run, must be full path to executable

	inputstr, optional

	Input to be sent to the command through stdin.

	
vdrp.vdrp_helpers.save_data(d, filename)

	

vdrprunner - VDRP batch runner

Authors

The HETDEX collaboration:

	Jan Snigula <snigula@mpe.mpg.de>

	Maximilian Fabricius <mxhf@mpe.mpg.de>

	Daniel Farrow <dfarrow@mpe.mpg.de>

Changelog

TODO

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 vdrp	

 	
 	
 vdrp.astrometry	

 	
 	
 vdrp.calc_fluxlim	

 	
 	
 vdrp.cltools	

 	
 	
 vdrp.cofes_vis	

 	
 	
 vdrp.containers	

 	
 	
 vdrp.daophot	

 	
 	
 vdrp.extraction	

 	
 	
 vdrp.file_tools	

 	
 	
 vdrp.fit_radec	

 	
 	
 vdrp.fplane_client	

 	
 	
 vdrp.jobsplitter	

 	
 	
 vdrp.mphelpers	

 	
 	
 vdrp.mplog	

 	
 	
 vdrp.photometry	

 	
 	
 vdrp.programs	

 	
 	
 vdrp.setup_fluxlim	

 	
 	
 vdrp.star_extraction	

 	
 	
 vdrp.utils	

 	
 	
 vdrp.vdrp_helpers	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	_format_record() (vdrp.mplog.MultiProcessingHandler method)

 	
 	_receive() (vdrp.mplog.MultiProcessingHandler method)

A

 	
 	add_ifu_xy() (in module vdrp.astrometry)

 	add_ra_dec() (in module vdrp.astrometry)

 	add_task() (vdrp.mphelpers.MPPool method)

 	(vdrp.mphelpers.ThreadPool method)

 	
 	allstar() (in module vdrp.daophot)

 	apply_factor_spline() (in module vdrp.star_extraction)

 	average_spectra() (in module vdrp.star_extraction)

 	average_spectrum() (in module vdrp.star_extraction)

B

 	
 	bindir() (in module vdrp.utils)

 	biweight_bin() (in module vdrp.utils)

 	biweight_filter() (in module vdrp.utils)

 	
 	biweight_filter2d() (in module vdrp.utils)

 	biweight_location() (in module vdrp.utils)

 	biweight_midvariance() (in module vdrp.utils)

C

 	
 	calc_fluxlim() (in module vdrp.calc_fluxlim)

 	calc_fluxlim_entrypoint() (in module vdrp.calc_fluxlim)

 	call_fit2d() (in module vdrp.programs)

 	call_fitem() (in module vdrp.programs)

 	call_fitonevp() (in module vdrp.programs)

 	call_getnormexp() (in module vdrp.programs)

 	call_imextsp() (in module vdrp.programs)

 	call_mkimage() (in module vdrp.programs)

 	call_mkimage3d() (in module vdrp.programs)

 	call_sumspec() (in module vdrp.programs)

 	call_sumsplines() (in module vdrp.programs)

 	close() (vdrp.mplog.MultiProcessingHandler method)

 	
 	cofes_4x4_plots() (in module vdrp.cofes_vis)

 	cofes_plots() (in module vdrp.cofes_vis)

 	combine_radec() (in module vdrp.astrometry)

 	compute_offset() (in module vdrp.astrometry)

 	compute_optimal_ang_off() (in module vdrp.astrometry)

 	configdir() (in module vdrp.utils)

 	copy_stardata() (in module vdrp.star_extraction)

 	cp_addin_files() (in module vdrp.astrometry)

 	cp_ixy_files() (in module vdrp.astrometry)

 	cp_post_stamps() (in module vdrp.astrometry)

 	cp_results() (in module vdrp.astrometry)

 	create_job_file() (in module vdrp.jobsplitter)

 	createDir() (in module vdrp.utils)

D

 	
 	daomaster() (in module vdrp.daophot)

 	DAOPHOT_ALS (class in vdrp.daophot)

 	daophot_find() (in module vdrp.astrometry)

 	(in module vdrp.daophot)

 	
 	daophot_phot() (in module vdrp.daophot)

 	daophot_phot_and_allstar() (in module vdrp.astrometry)

 	DaophotException

 	DithAll (class in vdrp.containers)

 	DithAllFile (class in vdrp.containers)

E

 	
 	emit() (vdrp.mplog.MultiProcessingHandler method)

 	extract_star() (in module vdrp.star_extraction)

 	
 	extract_star_single_shot() (in module vdrp.photometry)

 	extract_star_spectrum() (in module vdrp.extraction)

F

 	
 	filter_daophot_out() (in module vdrp.daophot)

 	fit_radec() (in module vdrp.fit_radec)

 	
 	fitradec_entrypoint() (in module vdrp.fit_radec)

 	flux_norm() (in module vdrp.astrometry)

G

 	
 	get_active_slots() (in module vdrp.astrometry)

 	get_als_files() (in module vdrp.astrometry)

 	get_arguments() (in module vdrp.calc_fluxlim)

 	(in module vdrp.fit_radec)

 	(in module vdrp.jobsplitter)

 	(in module vdrp.photometry)

 	(in module vdrp.star_extraction)

 	get_dithall_file() (in module vdrp.file_tools)

 	get_exposures() (in module vdrp.astrometry)

 	get_exposures_files() (in module vdrp.astrometry)

 	get_fiber_coords() (in module vdrp.astrometry)

 	get_fplane() (in module vdrp.fplane_client)

 	get_g_band_throughput() (in module vdrp.photometry)

 	get_mulitfits_file() (in module vdrp.file_tools)

 	get_norm_file() (in module vdrp.file_tools)

 	get_prefixes() (in module vdrp.astrometry)

 	
 	get_ra_dec_orig() (in module vdrp.astrometry)

 	get_sedfits() (in module vdrp.photometry)

 	get_shuffle_stars() (in module vdrp.photometry)

 	get_star_spectrum_data() (in module vdrp.extraction)

 	get_structaz() (in module vdrp.extraction)

 	get_throughput_file() (in module vdrp.file_tools)

 	get_track() (in module vdrp.astrometry)

 	getDefaults() (in module vdrp.astrometry)

 	(in module vdrp.calc_fluxlim)

 	(in module vdrp.fit_radec)

 	(in module vdrp.jobsplitter)

 	(in module vdrp.photometry)

 	(in module vdrp.setup_fluxlim)

 	(in module vdrp.star_extraction)

 	getNorm() (in module vdrp.astrometry)

 	getoff2() (in module vdrp.cltools)

I

 	
 	immosaicv() (in module vdrp.cltools)

 	imrot() (in module vdrp.cltools)

 	
 	install_mp_handler() (in module vdrp.mplog)

 	is_outlier() (in module vdrp.utils)

L

 	
 	load_als_data() (in module vdrp.astrometry)

M

 	
 	main() (in module vdrp.astrometry)

 	(in module vdrp.calc_fluxlim)

 	(in module vdrp.cofes_vis)

 	(in module vdrp.fit_radec)

 	(in module vdrp.fplane_client)

 	(in module vdrp.jobsplitter)

 	(in module vdrp.photometry)

 	(in module vdrp.star_extraction)

 	mangle_config_pathname() (in module vdrp.utils)

 	matrixCheby2D_7() (in module vdrp.utils)

 	median_absolute_deviation() (in module vdrp.utils)

 	
 	mk_daophot_opt() (in module vdrp.daophot)

 	mk_dithall() (in module vdrp.astrometry)

 	mk_match_matrix() (in module vdrp.astrometry)

 	mk_match_plots() (in module vdrp.astrometry)

 	mk_post_stamp_matrix() (in module vdrp.astrometry)

 	mk_sed_throughput_curve() (in module vdrp.photometry)

 	mkmosaic() (in module vdrp.astrometry)

 	mktot() (in module vdrp.astrometry)

 	mp_run() (in module vdrp.mphelpers)

 	MPPool (class in vdrp.mphelpers)

 	MPWorker (class in vdrp.mphelpers)

 	MultiProcessingHandler (class in vdrp.mplog)

N

 	
 	n_needed() (in module vdrp.jobsplitter)

 	
 	NoShotsException, [1]

P

 	
 	parse_args() (in module vdrp.jobsplitter)

 	parseArgs() (in module vdrp.astrometry)

 	(in module vdrp.calc_fluxlim)

 	(in module vdrp.fit_radec)

 	(in module vdrp.photometry)

 	(in module vdrp.setup_fluxlim)

 	(in module vdrp.star_extraction)

 	
 	print_bindir() (in module vdrp.utils)

 	print_conffile() (in module vdrp.utils)

 	print_configdir() (in module vdrp.utils)

 	project_xy() (in module vdrp.astrometry)

 	
 Python Enhancement Proposals

 	PEP 8

R

 	
 	read() (vdrp.containers.Spectrum method)

 	(vdrp.daophot.DAOPHOT_ALS static method)

 	(vdrp.vdrp_helpers.VdrpInfo class method)

 	read_all_mch() (in module vdrp.utils)

 	read_data() (in module vdrp.vdrp_helpers)

 	read_radec() (in module vdrp.utils)

 	redo_shuffle() (in module vdrp.astrometry)

 	retrieve_fplane() (in module vdrp.fplane_client)

 	rm() (in module vdrp.utils)

 	rmaster() (in module vdrp.astrometry)

 	run() (in module vdrp.astrometry)

 	(in module vdrp.jobsplitter)

 	(in module vdrp.photometry)

 	(vdrp.mphelpers.MPWorker method)

 	(vdrp.mphelpers.ThreadWorker method)

 	
 	run_biwt() (in module vdrp.photometry)

 	run_combsed() (in module vdrp.photometry)

 	run_command() (in module vdrp.vdrp_helpers)

 	run_fit2d() (in module vdrp.star_extraction)

 	run_fitem() (in module vdrp.star_extraction)

 	run_fitradecsp() (in module vdrp.programs)

 	run_getsdss() (in module vdrp.photometry)

 	run_shuffle_photometry() (in module vdrp.photometry)

 	run_sumlineserr() (in module vdrp.star_extraction)

S

 	
 	save() (vdrp.vdrp_helpers.VdrpInfo method)

 	save_data() (in module vdrp.vdrp_helpers)

 	send() (vdrp.mplog.MultiProcessingHandler method)

 	set_fname() (vdrp.containers.StarObservation method)

 	setFormatter() (vdrp.mplog.MultiProcessingHandler method)

 	setup_fluxlim() (in module vdrp.setup_fluxlim)

 	setup_fluxlim_entrypoint() (in module vdrp.setup_fluxlim)

 	
 	setup_logging() (in module vdrp.utils)

 	setup_mp_logging() (in module vdrp.mplog)

 	ShuffleStar (class in vdrp.photometry)

 	shutdownThread() (in module vdrp.mphelpers)

 	Spectrum (class in vdrp.containers)

 	star_extract_entrypoint() (in module vdrp.star_extraction)

 	StarObservation (class in vdrp.containers)

T

 	
 	test_input_files_exist() (in module vdrp.daophot)

 	ThreadPool (class in vdrp.mphelpers)

 	
 	ThreadShutDownException (class in vdrp.mphelpers)

 	ThreadWorker (class in vdrp.mphelpers)

U

 	
 	update_im3d_header() (in module vdrp.calc_fluxlim)

V

 	
 	vdrp.astrometry (module)

 	vdrp.calc_fluxlim (module)

 	vdrp.cltools (module)

 	vdrp.cofes_vis (module)

 	vdrp.containers (module)

 	vdrp.daophot (module)

 	vdrp.extraction (module)

 	vdrp.file_tools (module)

 	vdrp.fit_radec (module)

 	vdrp.fplane_client (module)

 	
 	vdrp.jobsplitter (module)

 	vdrp.mphelpers (module)

 	vdrp.mplog (module)

 	vdrp.photometry (module)

 	vdrp.programs (module)

 	vdrp.setup_fluxlim (module)

 	vdrp.star_extraction (module)

 	vdrp.utils (module)

 	vdrp.vdrp_helpers (module)

 	VdrpInfo (class in vdrp.vdrp_helpers)

W

 	
 	wait_completion() (vdrp.mphelpers.MPPool method)

 	(vdrp.mphelpers.ThreadPool method)

 	
 	where() (vdrp.containers.DithAllFile method)

 	write_conf_file() (in module vdrp.utils)

 	write_radec() (in module vdrp.utils)

Virus Data Reduction Pipeline API

	GNU GENERAL PUBLIC LICENSE

	Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for

software and other kinds of works.

The licenses for most software and other practical works are designed

to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program–to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you

these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:

(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains

that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run

modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.

States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and

modification follow.

TERMS AND CONDITIONS

	Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of

works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this

License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work

in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a “modified version” of the
earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based

on the Program.

To “propagate” a work means to do anything with it that, without

permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other

parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices”

to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

	Source Code.

The “source code” for a work means the preferred form of the work

for making modifications to it. “Object code” means any non-source
form of a work.

A “Standard Interface” means an interface that either is an official

standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other

than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all

the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users

can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that

same work.

	Basic Permissions.

All rights granted under this License are granted for the term of

copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not

convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under

the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

	Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological

measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid

circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid circumvention of
technological measures.

	Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you

receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,

and you may offer support or warranty protection for a fee.

	Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to

produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
“keep intact all notices”.

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent

works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

	Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms

of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded

from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any

tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

“Installation Information” for a User Product means any methods,

procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or

specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a

requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,

in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

	Additional Terms.

“Additional permissions” are terms that supplement the terms of this

License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option

remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you

add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further

restrictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you

must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the

form of a separately written license, or stated as exceptions;
the above requirements apply either way.

	Termination.

You may not propagate or modify a covered work except as expressly

provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your

license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is

reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

	Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or

run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

	Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically

receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an

organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the

rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

	Patents.

A “contributor” is a copyright holder who authorizes use under this

License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims

owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free

patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express

agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,

and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or

arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is “discriminatory” if it does not include within

the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting

any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

	No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

	Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have

permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

	Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of

the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the

Program specifies that a certain numbered version of the GNU General
Public License “or any later version” applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future

versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different

permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

	Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

	Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

	Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided

above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short

notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c’ for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate
parts of the General Public License. Of course, your program’s commands
might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school,

if any, to sign a “copyright disclaimer” for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program

into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to VDRP

 		
 Astrometry routines

 		
 Throughput routines

 		
 Fluxlimit routines

 		
 Setting up and running the fluxlimit calculations

 		
 Spectral line extraction routines

 		
 Contribute to VDRP

 		
 How To

 		
 Coding style

 		
 Testing

 		
 Documentation

 		
 Code documentation

 		
 astrometry - Astrometry routines

 		
 calc_fluxlim - Fluxlimit calculation routines

 		
 cltools - Commandine tools

 		
 cofes_vis - Visualization routines

 		
 containers - Container structures

 		
 daophot - Daophot helper routines

 		
 extraction - Spectrum extraction routines

 		
 file_tools - File access routines

 		
 fit_radec - RA/DEC fitting routines

 		
 fplane_client - FPlane retrieval routines

 		
 jobsplitter - Jobsplitter - slurm setup tool

 		
 mphelpers - MPHelpers - Parallel processing routines

 		
 mplog - Mplog - Parallel process logging

 		
 photometry - Throughput measurement routines

 		
 programs - FORTRAN program interfaces

 		
 setup_fluxlim - Fluxlimit setup routines

 		
 star_extraction - Stellar Extraction routines

 		
 utils - VDRP utility routines

 		
 vdrp_helpers - VDRP helper routines

 		
 vdrprunner - VDRP batch runner

 		
 Authors

 		
 Changelog

 		
 TODO

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

