VDRP Documentation
Release 1.0.5.post0

Jan Snigula

Feb 20, 2019

Contents

1 User documentation 3
L[.1 0 AStrometry TOUNES v v v v vt e 3
1.2 Throughput routines o e e e e e 3
1.3 Fluxlimit routines ot i e e e e e e e e e e e e e e e e e e e 3
1.4 Spectral line extraction routineso e e e e e e 3
2 Developer documentation 5
2.1 Contribute to VDRP e 5
2.2 Code documentation v v i i e e e e e e e e e e e e e e e e e e e 8
3 About 11
3.1 Authors . . . L e e 11
3.2 Changelog o o e 11
33 TODO . . . e 11
4 Links 13
Python Module Index 15

VDRP Documentation, Release 1.0.5.post0

Version: 1.0.5.post0

VDRP the Virus Data Reduction Pipeline is a collection of scripts and FORTRAN programs for astrometry, throughput
and flux limit calculation.

VDRP currently supports only python 2.7.

Contents 1

VDRP Documentation, Release 1.0.5.post0

2 Contents

CHAPTER 1

User documentation

1.1 Astrometry routines
1.2 Throughput routines

1.3 Fluxlimit routines

1.3.1 Setting up and running the fluxlimit calculations

To calculate the fluxlimit cube of a given night shot call:
vdrp_setup_flim night shot

This will create a subdirectory tree of the form nightvshot/flim and in there a slurm batch script named
flimnightvshot.slurm and the corresponding input files. Running the script as

vdrp_setup_flim —--commit night shot

the slurm script will be sent to the batch system automatically. If needed the default runtime of 06:00:00 can be
modified using —runtime on the command line.

1.4 Spectral line extraction routines

VDRP Documentation, Release 1.0.5.post0

4 Chapter 1. User documentation

CHAPTER 2

Developer documentation

2.1

Contribute to VDRP

2.1.1 How To

The suggested workflow for implementing bug fixes and/or new features is the following:

Identify or, if necessary, add to our redmine issue tracker one or more issues to tackle. Multiple issues can be
addressed together if they belong together. Assign the issues to yourself.

Create a new branch from the trunk with a name either referring to the topic or the issue to solve. E.g. if you
need to add a new executable, tracked by issue #1111 do_something:

svn cp “/trunk "/branches/do_something_ 1111\
-m 'create branch to solve issue #1111'

Switch to the branch:

svn switch */branches/do_something_ 1111

Implement the required changes and don’t forget to track your progress on redmine. If the feature/bug fix
requires a large amount of time, we suggest, when possible, to avoid one big commit at the end in favour of
smaller commits. In this way, in case of breakages, is easier to traverse the branch history and find the offending
code. For each commit you should add an entry in the Changelog file.

If you work on multiple issues on the same branch, close one issue before proceeding to the next. When closing
one issue is good habit to add in the description on the redmine the revision that resolves it.

Every function or class added or modified should be adequately documented as described in Coding style.

Documentation is essential both for users and for your fellow developers to understand the scope and signature of
functions and classes. If a new module is added, it should be also added to the documentation in the appropriate
place. See the existing documentation for examples.

Each executable should be documented and its description should contain enough information and examples to
allow users to easily run it.

https://luna.mpe.mpg.de/redmine/projects/vdrp

VDRP Documentation, Release 1.0.5.post0

 Every functionality should be thoroughly tested for python 3.5 or 3.6 in order to ensure that the code behaves
as expected and that future modifications will not break existing functionalities. When fixing bugs, add tests to
ensure that the bug will not repeat. For more information see Testing.

¢ Once the issue(s) are solved and the branch is ready, merge any pending change from the trunk:

svn merge ~/trunk

While doing the merge, you might be asked to manually resolve one or more conflicts. Once all the conflicts
have been solved, commit the changes with a meaningful commit message, e.g.: merge */trunk into
~/branches/do_something_1111. Then rerun the test suite to make sure your changes do not break
functionalities implemented while you were working on your branch.

* Then contact the maintainer of fplaneserver and ask to merge your branch back to the trunk.

Information about branching and merging can be found in the svn book. For any questions or if you need support do
not hesitate to contact the maintainer or the other developers.

2.1.2 Coding style

All the code should be compliant with the official python style guidelines described in PEP 8. To help you keep the
code in spec, we suggest to install plugins that check the code for you, like Synstastic for vim or flycheck for Emacs.

The code should also be thoroughly documented using the numpy style. See the existing documentation for examples.

2.1.3 Testing

Note: Every part of the code should be tested and should run at least under python 3.5 and possibly 3.6

fplaneserver uses the testing framework provided by the robot framework package. The tests should cover
every aspect of a function or method. If exceptions are explicitly raised, this should also tested to ensure that the
implementation behaves as expected.

The preferred way to run the tests is using tox, an automatised test help package. If you have installed tox, with e.g.
pip install tox, you can run it by typing:

tox

It will take care of creating virtual environments for every supported version of python, if it exists on the system, install
fplaneserver, its dependences and the packages necessary to run the tests and runs py . test

You can run the tests for a specific python version using:

python -m robot

A code coverage report is also created and can be visualized opening into a browser cover/index.html.

Besides running the tests, the t ox command also builds, by default, the documentation and collates the coverage tests
from the various python interpreters and can copy then to some directory. To do the latter create, if necessary, the
configuration file ~/ . config/little_deploy.cfqg and add to it a section called fplaneserver with either
one or both of the following options:

[fplaneserver]
i1f given the deploys the documentation to the given dir
doc = /path/to/dir

(continues on next page)

6 Chapter 2. Developer documentation

http://svnbook.red-bean.com/en/1.8/svn.branchmerge.html
https://www.python.org/dev/peps/pep-0008
https://github.com/scrooloose/syntastic
http://www.flycheck.org/en/latest/
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://robotframework.org
https://testrun.org/tox/latest/index.html

VDRP Documentation, Release 1.0.5.post0

(continued from previous page)

1f given the deploys the coverage report to the given dir
cover = /path/to/other/dir

it's also possible to insert the project name and the type of the document
to deploy using the {project} and {type_} placeholders. E.qg

cover = /path/to/dir/{project}_{type_}

will be expanded to /path/to/dir/fplaneserver._cover

H HH I W

For more information about the configuration file check little_deploy.

2.1.4 Documentation

To build the documentation you need the additional dependences described in pydep. They can be installed by hand
or during fplaneserver installation by executing one of the following commands on a local copy:

pip install /path/to/fplaneserver [doc]
pip install /path/to/fplaneserver([livedoc]

The first install sphinx, the alabaster theme and the numpydoc extension; the second also installs
sphinx—autobuild.

To build the documentation in html format go to the doc directory and run:

make html

The output is saved in _doc/build/html. For the full list of available targets type make help.

If you are updating the documentation and want avoid the edit-compile-browser refresh cycle, and you
have installed sphinx—-autobuild, type:

make livehtml

then visit http://127.0.0.1:8000. The html documentation is automatically rebuilt after every change of the source and
the browser reloaded.

Please make sure that every module in fplaneserver is present in the Code documentation.

2.1. Contribute to VDRP 7

https://github.com/montefra/little_deploy
http://127.0.0.1:8000

VDRP Documentation, Release 1.0.5.post0

2.2 Code documentation

2.2.1 astrometry - Astrometry routines

2.2.2 calc_fluxlim - Fluxlimit calculation routines
2.2.3 cltools - Commandine tools

2.2.4 cofes_vis - Visualization routines

2.2.5 containers - Container structures

2.2.6 daophot - Daophot helper routines

2.2.7 extraction - Spectrum extraction routines

2.2.8 file tools - File access routines

vdrp.file_tools.get_dithall_file (basedir, night, shot)
vdrp.file_tools.get_mulitfits_file (basedir, night, shot, expname, fname)
vdrp.file_tools.get_norm_£file (path, fname)

vdrp.file_tools.get_throughput_f£file (path, night, shot)
Equivalent of rtp0 script.

Checks if a night/shot specific throughput file exists.
If true, return the filename, otherise the filename for an average throughput file.
Parameters
path [str] Path to the throughput files

shotname [str] Name of the shot

2.29 fit_radec - RA/DEC fitting routines
2.2.10 fplane_client - FPlane retrieval routines

2.2.11 jobsplitter - Jobsplitter - slurm setup tool

vdrp.jobsplitter.create_job_£file (fname, commands, n_nodes, jobs_per_file, jobs_per_node,
args)
vdrp. jobsplitter.getDefaults ()
Get the defaults for the argument parser. Separating this out from the get_arguments routine allows us to use
different defaults when using the jobsplitter from within a differen script.

vdrp. jobsplitter.get_arguments (parser)
Add command line arguments for the jobsplitter, this function can be called from another tool, adding job splitter
support.

Parameters

8 Chapter 2. Developer documentation

VDRP Documentation, Release 1.0.5.post0

parser [argparse.ArgumentParser]
vdrp. jobsplitter.main (args)
vdrp. jobsplitter.n_needed (njobs, limit)

vdrp. jobsplitter.parse_args (argv)
Command line parser

Parameters

argv [list of strings] list to parsed
Returns

namespace: Parsed arguments

vdrp. jobsplitter.run()

2.2.12 mphelpers - MPHelpers - Parallel processing routines
class vdrp.mphelpers.MPPool (jobnum, num_proc)
Pool of threads consuming tasks from a queue

add_task (func, *args, **kargs)
Add a task to the queue

wait_completion ()
Wait for completion of all the tasks in the queue

class vdrp.mphelpers.MPWorker (name, tasks)
Bases: multiprocessing.process.Process

Thread executing tasks from a given tasks queue

run ()
Method to be run in sub-process; can be overridden in sub-class

class vdrp.mphelpers.ThreadPool (num_threads)
Pool of threads consuming tasks from a queue

add_task (func, *args, **kargs)
Add a task to the queue

wait_completion ()
Wait for completion of all the tasks in the queue

class vdrp.mphelpers.ThreadShutDownException

class vdrp.mphelpers.ThreadWorker (name, tasks)
Bases: threading.Thread

Thread executing tasks from a given tasks queue

run ()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

vdrp.mphelpers.mp_run (func, args, rargv, parser)

vdrp.mphelpers.shutdownThread ()

2.2. Code documentation 9

https://docs.python.org/2.7/library/threading.html#threading.Thread

VDRP Documentation, Release 1.0.5.post0

2.2.13 mplog - Mplog - Parallel process logging

2.2.14 photometry - Throughput measurement routines
2.2.15 programs - FORTRAN program interfaces

2.2.16 setup_fluxlim - Fluxlimit setup routines

2.2.17 star_extraction - Stellar Extraction routines
2.2.18 utils - VDRP utility routines

2.2.19 vdrp_helpers - VDRP helper routines
class vdrp.vdrp_helpers.VdrpInfo (*args, **kwargs)
Bases: collections.OrderedDict
classmethod read (dir, filename="vdrp_info.pickle’)
save (dir, filename="vdrp_info.pickle’)
vdrp.vdrp_helpers.read_data (filename)

vdrp.vdrp_helpers.run_command (cmd, input=None, wdir=None)
Run and fortran command sending the optional input string on stdin.

Parameters
cmd [str] The command to be run, must be full path to executable
input [str, optional] Input to be sent to the command through stdin.

vdrp.vdrp_helpers.save_data (d, filename)

2.2.20 vdrprunner - VDRP batch runner

10 Chapter 2. Developer documentation

https://docs.python.org/2.7/library/collections.html#collections.OrderedDict

CHAPTER 3

About

3.1 Authors

The HETDEX collaboration:
e Jan Snigula <snigula@mpe.mpg.de>
* Maximilian Fabricius <mxhf@mpe.mpg.de>

¢ Daniel Farrow <dfarrow @mpe.mpg.de>

3.2 Changelog

3.3 TODO

11

mailto:snigula@mpe.mpg.de
mailto:mxhf@mpe.mpg.de
mailto:dfarrow@mpe.mpg.de

VDRP Documentation, Release 1.0.5.post0

12 Chapter 3. About

CHAPTER 4

Links

* genindex
* modindex

e search

13

VDRP Documentation, Release 1.0.5.post0

14 Chapter 4. Links

Python Module Index

vdrp.
vdrp.
vdrp.
vdrp.

file_tools,8
jobsplitter, 8
mphelpers, 9
vdrp_helpers, 10

15

VDRP Documentation, Release 1.0.5.post0

16 Python Module Index

Index

A

add_task() (vdrp.mphelpers.MPPool method), 9
add_task() (vdrp.mphelpers.ThreadPool method), 9

C

create_job_file() (in module vdrp.jobsplitter), 8

G

get_arguments() (in module vdrp.jobsplitter), 8
get_dithall_file() (in module vdrp.file_tools), 8
get_mulitfits_file() (in module vdrp.file_tools), 8
get_norm_file() (in module vdrp.file_tools), 8
get_throughput_file() (in module vdrp.file_tools), 8
getDefaults() (in module vdrp.jobsplitter), 8

M

main() (in module vdrp.jobsplitter), 9
mp_run() (in module vdrp.mphelpers), 9
MPPool (class in vdrp.mphelpers), 9
MPWorker (class in vdrp.mphelpers), 9

N

n_needed() (in module vdrp.jobsplitter), 9

P

parse_args() (in module vdrp.jobsplitter), 9
Python Enhancement Proposals
PEP 8, 6

R

read() (vdrp.vdrp_helpers.Vdrplnfo class method), 10
read_data() (in module vdrp.vdrp_helpers), 10

run() (in module vdrp.jobsplitter), 9

run() (vdrp.mphelpers.MPWorker method), 9

run() (vdrp.mphelpers.ThreadWorker method), 9
run_command() (in module vdrp.vdrp_helpers), 10

S

save() (vdrp.vdrp_helpers.VdrpInfo method), 10

save_data() (in module vdrp.vdrp_helpers), 10
shutdownThread() (in module vdrp.mphelpers), 9

T

ThreadPool (class in vdrp.mphelpers), 9
ThreadShutDownException (class in vdrp.mphelpers), 9
ThreadWorker (class in vdrp.mphelpers), 9

V

vdrp.file_tools (module), 8
vdrp.jobsplitter (module), 8
vdrp.mphelpers (module), 9
vdrp.vdrp_helpers (module), 10
VdrpInfo (class in vdrp.vdrp_helpers), 10

W

wait_completion() (vdrp.mphelpers.MPPool method), 9
wait_completion() (vdrp.mphelpers.ThreadPool method),
9

17

	User documentation
	Astrometry routines
	Throughput routines
	Fluxlimit routines
	Spectral line extraction routines

	Developer documentation
	Contribute to VDRP
	Code documentation

	About
	Authors
	Changelog
	TODO

	Links
	Python Module Index

